Original Articles
14 February 2025
Vol. 42 No. 3 (2020)

A PPAR-α AGONIST PROTECTS THE NON-ADRENERGIC, NON-CHOLINERGIC INHIBITORY SYSTEM OF GUINEA PIG TRACHEA FROM THE EFFECT OF INHALED AMMONIUM PERSULPHATE: A PILOT STUDY

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
40
Views
22
Downloads

Authors

Aim of the study. Inhaled ammonium persulphate (AP) reduces non adrenergic, non cholinergic (NANC) relaxation in the guinea pig trachea, as a part of its inflammatory effects. Peroxisome Proliferator-Activated Receptor (PPAR) stimulation has shown anti-inflammatory properties. This study aimed at evaluating whether the PPAR-α agonist WY 14643 can prevent the reduction in NANC relaxation caused by inhaled AP in the guinea pig trachea.  Materials and Methods. Four groups of ten male guinea pigs were treated for three weeks with inhaled AP (10 mg/m3, 30 min per day, group A), saline (group B), AP and WY 14643 (0.36 uM/die, per os, group C), and AP, WY 14643 and the PPAR-α antagonist GW 6471 (0.36 uM/die, per os, group D). NANC relaxations to electrical field stimulation (EFS) at 3 Hz. were evaluated in whole tracheal segments as intraluminal pressure changes. Results. The tracheal NANC relaxations were reduced by 90.3% in group A, as compared to group B. In group C, they were reduced by only 22.2%. In group D, they were reduced by 92.6 %. PPAR-α receptors were detected in inhibitory nerve fibers within the trachea as shown by immonohistochemical analysis. Conclusions. The PPAR-α agonist WY 14643 protects the NANC inhibitory system of the guinea pig trachea from the effect of inhaled ammonium persulphate and its protective effect is antagonized by GW 6471. PPAR-α might be exploited as a pharmacological target in asthma therapy.

Altmetrics

Downloads

Download data is not yet available.

Citations

1) Tarlo S. M., Liss G. M., Dias C., et al. Assessment of the relationship between isocyanate exposure and occupational asthma. Am J Ind Med 1997; 32: 517-521. DOI: https://doi.org/10.1002/(SICI)1097-0274(199711)32:5<517::AID-AJIM12>3.0.CO;2-5
2) Kopferschmitt-Kubler M. C., Ameille J., Popin E., et al. Occupational asthma in France: a 1-yr report of the observatoire National de Asthmes Professionnels project. Eur Respir J 2002; 19: 84-89. 3) Moscato G., Pignatti P., Yacoub M. R., et al. Occupational asthma and occupational rhinitis in hairdressers. Chest 2005; 128: 35903598. DOI: https://doi.org/10.1183/09031936.02.00102202
4) Holgate S. T., Thomas M. Asthma. In Middleton's Allergy Essentials: First Edition. Elsevier Inc. 2017. https://doi.org/10.1016/B978-0-323-37579-5.00007-6 5) Chu, C., Artis, D., & Chiu, 1. M. (2020). Neuro-immune Interactions in the Tissues. Immunity, 52(3), 464-474. https://doi.org/10.1016/j.immuni.2020.02.017 6) Lemière C., Vandenplas O. Occupational Allergy. Middleton's Allergy Essentials: First Edition. 2017; 361-375. https://doi.org/10.1016/B978-0-323-37579-5.00014-3 7) Dellabianca A., Faniglione M., De Angelis S., et al. Adenosine A1 and A3 receptor agonists inhibit nonadrenergic, noncholinergic relaxations in the guinea pig isolated trachea. Respiration 2009 78: 75-83.
8) Dellabianca A., Sacchi M., Anselmi L., et al. Role of carbon monoxide in electrically induced non-adrenergic, non-cholinergic relaxations in the guinea-pig isolated whole trachea. Br J Pharmacol 2007; 150: 220-6. DOI: https://doi.org/10.1038/sj.bjp.0706968
9) Barnes P. J. Neuroeffector mechanisms: the interface between inflammation and neuronal responses. J Allergy Clin Immunol 1996; 98: S73-S81. DOI: https://doi.org/10.1016/S0091-6749(96)80132-1
10) Miura M., Ichinose M., Kimura K., et al. Dysfunction of nonadrenergic noncholinergic inhibitory system after antigen inhalation in actively sensitized cat airways. Am Rev Respir Dis 1992; 145: 70-74. DOI: https://doi.org/10.1164/ajrccm/145.1.70
11) Belvisi M. G., Stretton C. D., Miura M., et al. Inhibitory NANC nerves in human tracheal smooth muscle: a quest for the neurotransmitter. J Appl Physiol 1992; 73: 2505-2510. DOI: https://doi.org/10.1152/jappl.1992.73.6.2505
12) Jartti T. Asthma, asthma medication and autonomic nervous system dysfunction. Clinical Physiology 2001; 21: 260-269. DOI: https://doi.org/10.1046/j.1365-2281.2001.00323.x
13) Mensing T., Marek W., Baur X. The influence of ammonium persulfate on guinea pig tracheal muscle tone: release of nitric oxide. Pharmacol Toxicol 1996; 78: 336-340. DOI: https://doi.org/10.1111/j.1600-0773.1996.tb01385.x
14) Becker J., Delayre-Orthez C., Frossard N., et al. The peroxisome proliferator-activated receptor a agonist fenofibrate decreases airway reactivity to methacholine and increases endothelial nitric oxide synthase phosphorylation in mouse lung. Fundam Clin Pharmacol 2012; 26: 340-346. DOI: https://doi.org/10.1111/j.1472-8206.2011.00935.x
15) Evans R. M. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889-895. DOI: https://doi.org/10.1126/science.3283939
16) Lamers C., Schubert-Zsilavecz M., Merk D. Therapeutic modulators of peroxisome proliferator-activated receptors (PPAR): a patent review (2008-present). Expert Opin Ther Pat 2012; 22: 803-841. 17) Belvisi M. G., Hele D. J., Birrell M. A. Peroxisome proliferatoractivated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol 2006; 533: 101-109. DOI: https://doi.org/10.1517/13543776.2012.699042
18) Spears M., Donnelly I., Jolly L., et al. Bronchodilatory effect of the PPAR-gamma agonist rosiglitazone in smokers with asthma. Clin Pharmacol Ther 2009; 86: 49-53. DOI: https://doi.org/10.1038/clpt.2009.41
19) Barnes P. J. (2012). Severe asthma: Advances in current management and future Therapy. J Allergy Clin Immunol 129: 48-59. DOI: https://doi.org/10.1016/j.jaci.2011.11.006
20) Donovan C., Bailey S. R., Tran J., et al. 2015 Rosiglitazone elicits in vitro relaxation in airways and precision cut lung slices from a mouse model of chronic allergic airways disease. Am J Physiol Lung Cell Mol Physiol 2015; 309: L1219-L1228. DOI: https://doi.org/10.1152/ajplung.00156.2015
21) Lee H. L., Rhee C. K., Kang J. Y., et al. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma. Korean J Intern Med 2016; 31: 89-97. 22) Belvisi M. G., Mitchell J. A. Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease. Br J Pharmacol 2009; 158: 994-1003. DOI: https://doi.org/10.3904/kjim.2016.31.1.89
23) Gervois P., Mansouri R. M. PPARa as a therapeutic target in inflammation-associated diseases. Expert Opin Ther Targets 2012; 16: 1113-1125. DOI: https://doi.org/10.1517/14728222.2012.715633
24) Yoo S. H., Abdelmegeed M. A., Song B. J. Activation of PPARa by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute Jung injury. Biochem Biophys Res Commun 2013; 436: 366-371. DOI: https://doi.org/10.1016/j.bbrc.2013.05.073
25) Hecker M., Behnk A., Morty R. E., et al. PPAR-a activation reduced LPS-induced inflammation in alveolar epithelial cells. Exp Lung Res 2015; 41: 393-403. DOI: https://doi.org/10.3109/01902148.2015.1046200
26) Gugliandolo E., Fusco R., Ginestra G., et al. Involvement of TLR4 and PPAR-a Receptors in Host Response and NLRP3 Inflammasome Activation, Against Pulmonary Infection With Pseudomonas Aeruginosa. SHOCK 2019; 51(2): 221-227. DOI: https://doi.org/10.1097/SHK.0000000000001137
27) Liu Y., Xie L., Yang M., et al. PPAR-a improves the recovery of lung function following acute respiratory distress syndrome by suppressing the level of TGF-ß1. Mol Med Rep 2017; 16: 49-56. 28) Lakshmi S. P., Reddy A. T., Banno A., et al. PPAR Agonists for the Prevention and Treatment of Lung Cancer. Hindawi Publishing Corporation PPAR Research 2017; 8252796. doi: 10.1155/2017/8252796. DOI: https://doi.org/10.3892/mmr.2017.6562
29) Delayre-Orthez C., Becker J., Auwerx J., et al. 2008. Suppression of allergen-induced airway inflammation and immune response by the peroxisome proliferator-activated receptor-alpha agonist fenofibrate. Eur J Pharmacol 2017; 581: 177-184. DOI: https://doi.org/10.1016/j.ejphar.2007.11.040
30) Becker J., Delayre-Orthez C., Frossard N., et al. Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases? Fundam Clin Pharmacol 2006; 20: 429-447. DOI: https://doi.org/10.1111/j.1472-8206.2006.00425.x
31) Dellabianca A., Faniglione M., De Angelis S., et al. Inhaled ammonium persulphate inhibits non-adrenergic, non-cholinergic relaxations in the guinea pig isolated trachea. Respiration 2010; 79: 411-419. 32) Cimini A., Benedetti E., Cristiano L., et al. Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience 2005; 130: 325-337. 33) Gray E., Ginty M., Kemp K., et al. Peroxisome proliferator-activated receptor-a agonists protect cortical neurons from inflammatory mediators and improve peroxisomal function. Eur J Neurosci 2011; 33: 1421-1432. DOI: https://doi.org/10.1016/j.neuroscience.2004.09.043
34) Enikeev O., Enikeeva S. A., Bikmetova N. R. PPAR-alpha agonist (fenofibrate) therapy in exacerbation control of chronic obstructive pulmonary disease of severe stage. Eur Respir J 2014; 44: P1514. 35) Adner M., Canning B.J., Meurs H., et al. Back to the future: reestablishing guinea pig in vivo asthma models. Clinical Science 2020; 134: 1219-1242. DOI: https://doi.org/10.1042/CS20200394
36) Canning, B. J. Reflex regulation of airway smooth muscle tone. In Journal of Applied Physiology 2006; 101(3): 971-985. DOI: https://doi.org/10.1152/japplphysiol.00313.2006
37) Ricciardolo F.L.M., Nijkamp F., De Rose V., Folkerts G. The guinea pig as an animal model for asthma. Curr Drug Targets. 2008; 9(6): 452-65. 38) Wright J.L., Cosio M., Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008; 295(1): L1-15. DOI: https://doi.org/10.2174/138945008784533534
39) Boyce J.A., Austen K.F. No audible wheezing: nuggets and conundrums from mouse asthma models. J Exp Med 2005; 201: 1869-1873 40) Mensing T., Marek W., Raulf-Heimsoth M., et al. Acute exposure to hair bleach causes airway hyperresponsiveness in a rabbit model. Eur Respir 1998; J 12: 1371-1374. DOI: https://doi.org/10.1183/09031936.98.12061371
41) Curtis M. J., Bond R. A., Spina D., et al. Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 2015; 172: 3461-3471. DOI: https://doi.org/10.1111/bph.12856
42) Munakata M., Huang I., Mitzner W., et al. Protective role of epithelium in the guinea pig airway. J Appl Physiol 1989; 66: 1547-1552. 43) Fidaleo M., Fanelli F., Ceru M. P., et al. Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARa) and its lipid ligands. Curr Med Chem 2014; 21: 2803-2821. DOI: https://doi.org/10.2174/0929867321666140303143455
44) Moran E. P., Ma J. X. Therapeutic Effects of PPARo on Neuronal Death and Microvascular Impairment. Hindawi Publishing Corporation PPAR Research 2015; 595426. doi: 10.1155/2015/595426. DOI: https://doi.org/10.1155/2015/595426
45) El Makkawy F. S., Ezzo A. M., Ouda E. A. E. A., et al. Pharmacological Effects of Gemfibrozil on Some Isolated Smooth Muscle Preparations Of Experimental Animals. The Egyptian Journal of Hospital Medicine 2017; 66: 1-17. DOI: https://doi.org/10.12816/0034628

How to Cite



A PPAR-α AGONIST PROTECTS THE NON-ADRENERGIC, NON-CHOLINERGIC INHIBITORY SYSTEM OF GUINEA PIG TRACHEA FROM THE EFFECT OF INHALED AMMONIUM PERSULPHATE: A PILOT STUDY. (2025). Giornale Italiano Di Medicina Del Lavoro Ed Ergonomia, 42(3), 153-159. https://doi.org/10.4081/gimle.452