Original Articles
17 February 2025
Vol. 42 No. 4 (2020)

COULD COMBUSTION-GENERATED NANOPARTICLES INDUCE CYTOTOXICITY ALSO AT THE EXTREMELY LOW DOSES TYPICAL OF INDOOR ENVIRONMENTS?

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
27
Views
32
Downloads

Authors

The presence of nanoparticles in the environment is mainly attributed to outdoor sources but sub-10 nm particles may also form indoor as effect of domestic activities such as cooking, heating, air freshening. Today, due to the COVID-19 pandemic, people are staying home for longer periods of times, thus being exposed to a poor indoor air quality. Due to elevated numerical concentration and large surface area, the health effect of sub-10 nm particles can go beyond what expected from their low mass concentration in the atmosphere. The objective of this study is to find, based on analysis of recent in vitro studies, a dose-effect correlation based on particle size/surface more than on particle mass. Such a correlation cold be useful to assess the health effects of people exposed to very low mass doses of nanoparticles either indoor or outdoor.​

Altmetrics

Downloads

Download data is not yet available.

Citations

1) Atkinson RW, Carey IM, Kent AJ, Van Staa TP, Anderson HR, Cook DG. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013; 24(1): 44-53. DOI: https://doi.org/10.1097/EDE.0b013e318276ccb8
2) Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. Ambient pollution and heart rate variability. Circulation 2000; 101: 1267-1273. DOI: https://doi.org/10.1161/01.CIR.101.11.1267
3) Pedata P, Stoeger T, Zimmermann R, Peters A, Oberdörster G, D'Anna A. Are we forgetting the smallest, sub 10 nm combustion generated particles? Particle and Fibre Toxicology 2015; 12. ISSN: 1743-8977. DOI: https://doi.org/10.1186/s12989-015-0107-3
4) Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultratine particles. Environ Health Perspect 2005; 113: 823-39. DOI: https://doi.org/10.1289/ehp.7339
5) Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, et al. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 2010; 73: 445-461. DOI: https://doi.org/10.1080/15287390903489422
6) Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J Expo Sci Environ Epidemiol 2001; 11: 231-252. DOI: https://doi.org/10.1038/sj.jea.7500165
7) Samet JM. Indoor air pollution: a public health perspective. Indoor Air 1993; 3: 219-226. DOI: https://doi.org/10.1111/j.1600-0668.1993.00002.x
8) Kang JH, Cho J, Ko YT. Investigation on the effect of nanoparticle size on the blood/brain tumour barrier permeability by in situ perfusion via internal carotid artery in mice. Journal of drug targeting 2019; 27(2952): 103-110. DOI: https://doi.org/10.1080/1061186X.2018.1497037
9) Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, Conrad K, Mayer-Proschel M, Cory-Slechta D. Developmental neurotoxicity of inhaled ambient ultrafine particle er poli parallen ih europathelatien end behavioral
Neurotoxicology 2017; 59(3026): 140-154. DOI: https://doi.org/10.1016/j.neuro.2015.12.014
10) Sgro LA, Simonelli A, Pascarella L, Minutolo P, Guarnieri D. Sannolo N, Netti P, D'Anna A. Toxicological properties of nanoparticles of organic compounds (NOC) from flames and vehicle exhausts. Environmental science & technology 2009; (43): 2608-2613. DOI: https://doi.org/10.1021/es8034768
11) Sgro A. D'Anna, Minutolo P. On the characterization of nanoparticles emitted from combustion sources related to understanding their effects on health and climate. Journal of hazardous materials 2012; 420-426. DOI: https://doi.org/10.1016/j.jhazmat.2011.10.097
12) Irimiea C, Faccinetto A, Mercier X, Ortega IK, Nuns N, Therssen E, Desgroux P, Focsa C. Unveiling trends in soot nucleation and growth: when secondary ion mass spectrometry meets statistical analysis. Carbon 2019; 144: 815-830. DOI: https://doi.org/10.1016/j.carbon.2018.12.015
13) Cain JP, Gassman PL, Laskin A, Wang H. Micro-FTIR study of soot chemical composition: evidence of aliphatic hydrocarbons on nascent soot surfaces. Physical Chemistry Chemical Physics 2010; 12: 5206-5210. DOI: https://doi.org/10.1039/b924344e
4) Schenk M, Lieb S, Vieker H, Beyer A, Golzhauser A, Wang ! ohse-Hoinghaus K. Morphology of nascent soot in ethyler flames. Proceedings of the Combustion Institute 2015; 35: 1879-1886. DOI: https://doi.org/10.1016/j.proci.2014.05.009
15) Commodo M, De Falco G, Larciprete R, D'Anna A, Minutolo P. On the hydrophilic/hydrophobic character of carbonaceous nanoparticles formed in laminar premixed flames. Experimental Thermal and Fluid Science 2016; 73: 56-63. DOI: https://doi.org/10.1016/j.expthermflusci.2015.09.005
16) Lighty JS, Veranth JM, Sarorofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association 2000; 17) Kittelson DB, Watts WF, Johnson GP. Nanoparticle emissions on Minnesota highways. Atmospheric Environment 2004; 38: 9-19. 18) Sirignano M, Conturso M, Magno A, Di lorio S, Mancaruso E Vaglieco BM, D'Anna A. Evidence of sub-10 nm particles emitted from a small-size diesel engine. Experimental Thermal and Fluid Science 2018: 95: 60-64.
19) Ronkko T, Virtanen A, Kannosto J, Keskinen J, Lappi M, Pirjola L. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environmental Science and Technology 2007; 41: 6384-6389. domestic burners. Environmental Engineering Science 2008; 25: DOI: https://doi.org/10.1021/es0705339
21) Sgro LA, Basile G, Barone A, D'Anna A, Minutolo P, Borghese A,
D'Alessio A. Detection of combustion formed nanoparticles. Chemosphere 2003; 51: 1079-1090. DOI: https://doi.org/10.1016/S0045-6535(02)00718-X
2) Hou D, Zong D, Lindberg CS, Kraft M, You X. On the coagulatic fficiency of carbonaceous nanoparticles. Journal of Aeros Science 2020: 140. DOI: https://doi.org/10.1016/j.jaerosci.2019.105478
23) Sirignano M, D'Anna A. Filtration and coagulation efficiency of sub-10 mm dombustion-generated particles. Fuel 2018; 221: 298-302. 24) Morawska L, Ayoko GA, Bae GN, Buonanno G, Chao CYH, Clifford S, Fu SC, Hänninen O, He C, Isaxon C, Mazaheri M. Salthammer T, Waring MS, Wierzbicka A. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International 2017; 108: 75-83. DOI: https://doi.org/10.1016/j.envint.2017.07.025
25) Abt E, Suh HH, Catalano P and Koutrakis P. Relative Contribution of Outdoor and Indoor Particle Sources to Indoor Concentrations. Environ Sci Tech 2000: 34: 3579-3587. DOI: https://doi.org/10.1021/es990348y
26) Long C M, Suh HH, Catalano P and Koutrakis, P. Using Time- and Size-Resolved Particulate Data to Quantify Indoor Penetration and Deposition Behavior. Environ Sci Tech 2001; 35: 2089-2099. DOI: https://doi.org/10.1021/es001477d
27) Dennekamp M, Howarth S, Dick CA, Cherrie JHW, Donaldson K and Seaton A. Ultrafine Particles and Nitrogen Oxides Generated by Gas and Electric Cooking. Occup Environ Med 2001; 58: 511-516. 28) Wallace L. Indoor sources of ultrafine and accumulation mode particles: size distributions, size-resolved concentrations, and source strengths. Aerosol Science and Technology 2006; 40: 348-360. DOI: https://doi.org/10.1136/oem.58.8.511

How to Cite



COULD COMBUSTION-GENERATED NANOPARTICLES INDUCE CYTOTOXICITY ALSO AT THE EXTREMELY LOW DOSES TYPICAL OF INDOOR ENVIRONMENTS?. (2025). Giornale Italiano Di Medicina Del Lavoro Ed Ergonomia, 42(4), 225-230. https://doi.org/10.4081/gimle.463