Original Articles
20 February 2025
Vol. 43 No. 3 (2021)

[Neuromotor rehabilitation with “sonification” techniques]

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
38
Views
24
Downloads

Authors

The use of sound and music in the rehabilitation context is now supported by a lot of scientific evidence. The reiteration of tasks-oriented movements to functional recovery, typical of the rehabilitation training, can be effectively supported by adequate sonorous-music stimuli. This integration aims at introducing an audio-motor feedback, describing and modulating the movement. In addition, the sonorous-music stimuli induce potential plastic changes and stimulates brain networks underlying to the mechanisms of reward and motivation, improving the patient's involvement and compliance in the rehabilitation activities. In particular, the Neurologic Music Therapy (NMT) provided interesting results based on different techniques that use sonorous-music elements to achieve objectives related to motor, cognitive and sensory domains.
The sonification arises as a technique designed to represent kinetic data (obtained by the use of sensors) through appropriate sonorous-music patterns (processed by a sound synthesis software) with the aim of improving the control of the movement from its planning to its execution, also improving the proprioceptive feedback. In a recent study involving stroke patients in a sub-acute stage, the use of the "SonicHand" kit was positively evaluated not only in the rehabilitation of upper limbs motor functions, but also in the quality-of-life improvement and in perceiving pain during rehabilitation. On this basis, a new research project ("Sonic Walk") has been developed based on the use of sonification techniques and aimed at gait rehabilitation in patients with stroke, Parkinson's disease and multiple sclerosis.

Altmetrics

Downloads

Download data is not yet available.

Citations

1) Raglio A. (2018). Music and neurorehabilitation: Yes, we can!. Functional neurology, 33(4), 173-174.
2) Raglio, A., Imbriani, C., & Oddone, E. (2017). Musicoterapia e Medicina del Lavoro [Music therapy and Occupational medicine]. Giornale italiano di medicina del lavoro ed ergonomia, 38(4), 257-260. 3) Raglio, A., Giambelluca, E., Balia, et al. (2020). Music as support to Occupational Therapy. La musica come supporto alla terapia occupazionale. Giornale italiano di medicina del lavoro ed ergonomia, 42(2), 133-136. DOI: https://doi.org/10.4081/gimle.450
4) Raglio A., Molteni D., Panigazzi M., et al. (2018). La riabilitazione con la musica nella Medicina Riabilitativa e nelle Cure Correlate: basi scientifiche e applicazioni, Giornale Italiano di Medicina del Lavoro ed Ergonomia, 40(1), Suppl. 59-66.
5) Sihvonen, A.J., Särkämö, T., Leo, V., et al. (2017). Music-based interventions in neurological rehabilitation. The Lancet Neurology, 16(8), 648-660.
6) Chatterjee, D., Hegde, S., & Thaut, M. (2021). Neural plasticity: The substratum of music-based interventions in neurorehabilitation. NeuroRehabilitation, 10.3233/NRE-208011. Advance online publication. https://doi.org/10.3233/NRE-208011 7) Wilson B.A. Neuropsychological rehabilitation: state of the science. S Afr J Psychol. 2013;43(3):267-277. doi: 10.1177/0081246313494156 8) Supnet, C., Crow, A., Stutzman, S., et al. (2016). Music as medicine: the therapeutic potential of music for acute stroke patients. Critical Care Nurse, 36(2), el-e7.
9) Magee, W.L., & Baker, M. (2009). The use of music therapy in neuro-rehabilitation of people with acquired brain injury. British Journal of Neuroscience Nursing, 5(4), 150-156. DOI: https://doi.org/10.12968/bjnn.2009.5.4.41678
10) Twyford, K., & Watson, T. (2008). Integrated team working: Music therapy as part of transdisciplinary and collaborative approaches. Jessica Kingsley Publishers.
11) Sihvonen, A.J., Särkämö, T., Leo, V., et al. (2017). Music-based 16(8), 648-660. DOI: https://doi.org/10.1016/S1474-4422(17)30168-0
12) Schneider, S., Schönle, P.W., Altenmüller, E., et al. (2007). Using musical instruments to improve motor skill recovery following a stroke. Journal of neurology, 254(10), 1339-1346. DOI: https://doi.org/10.1007/s00415-006-0523-2
13) Altenmuller, E., Marco-Pallares, J., Munte, T.F., et al. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Annals of the New York Academy of Sciences, 1169(1), 395-405. DOI: https://doi.org/10.1111/j.1749-6632.2009.04580.x
14) Schlaug, G. (2009). Part VI introduction: listening to and making music facilitates brain recovery processes. Annals of the New York Academy of Sciences, 1169, 372. DOI: https://doi.org/10.1111/j.1749-6632.2009.04869.x
15) Zhang, Y., Cai, J., Zhang, Y., et al. (2016). Improvement in strokeinduced motor dysfunction by music-supported therapy: a systematic review and meta-analysis. Scientific reports, 6(1), 1-8. 16) Bangert, M., & Altenmüller, E.O. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC neuroscience, 4:26. DOI: https://doi.org/10.1186/1471-2202-4-26
17) Bangert, M., Peschel, T., Schlaug, G., et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30(3), 917-926. DOI: https://doi.org/10.1016/j.neuroimage.2005.10.044
18) Thaut, M., & Hoemberg, V. (Eds.). (2014). Handbook of neurologic music therapy. Oxford University Press (UK).
19) Thaut, M.H., & Thaut, M. (2005). Rhythm, music, and the brain: Scientific foundations and clinical applications (Vol. 7). Routledge. 20) Hermann, T., Hunt, A., & Neuhoff, J.G. (2011). The "sonification" handbook (pp. 399-425). Berlin: Logos Verlag.
21) Dubus, G., & Bresin, R. (2013). A systematic review of mapping strategies for the "sonification" of physical quantities. PloS one, 8(12), e82491. DOI: https://doi.org/10.1371/journal.pone.0082491
22) Effenberg, A.O. (2005). Movement "sonification": Effects on perception and action. IEEE multimedia, 12(2), 53-59. DOI: https://doi.org/10.1109/MMUL.2005.31
23) Stanton, T.R., & Spence, C. (2020). The influence of auditory cues on bodily and movement perception. Frontiers in psychology, 10, 3001. 24) Dyer, J.F., Stapleton P,. & Rodger, M. (2017). Mapping "sonification" for Perception and Action in Motor Skill Learning. Front. Neurosci. 11:463. doi: 10.3389/fnins.2017.00463 25) Oppici, L., Frith, E., & Rudd, J. (2020). A perspective on implementing movement "sonification" to influence movement (and eventually cognitive) creativity. Frontiers in Psychology, 11.
26) Schaffert, N., Janzen, T.B., Mattes, K., et al. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in Psychology, 10, 244. DOI: https://doi.org/10.3389/fpsyg.2019.00244
27) Castro, F., Osman, L., Di Pino, G., et al. (2021). Does "sonification" of action simulation training impact corticospinal excitability and audiomotor plasticity?. Experimental Brain Research, 1-17. DOI: https://doi.org/10.1007/s00221-021-06069-w
28) Winstein, C.J. (1991). Knowledge of results and motor learning— implications for physical therapy. Physical therapy, 71(2), 140-149. DOI: https://doi.org/10.1093/ptj/71.2.140
Occupational Therapy, 57(3), 329-336.
30) F Dyer, J., Stapleton, P., & WM Rodger, M. (2015). "sonification" as concurrent augmented feedback for motor skill learning and the importance of mapping design. The Open Psychology Journal, 8(1). 31) Ghai, S., & Ghai, I. (2019). Role of "sonification" and Rhythmic Auditory Cueing for Enhancing Gait Associated Deficits Induced by Neurotoxic Cancer Therapies: A Perspective on Auditory Neuroprosthetics. Frontiers in neurology, 10, 21. https://do1.org/10.3389/fneur.2019.00021 32) Mezzarobba, S., Grassi, M., Pellegrini, L., et al. (2018). Action Observation Plus "sonification". A Novel Therapeutic Protocol for Parkinson's Patient with Freezing of Gait. Frontiers in neurology, 8, 723. https://doi.org/10.3389/fneur.2017.00723 33) Bevilacqua, F., Boyer, E.O., Françoise, J., et al. (2016). Sensorimotor learning with movement "sonification": perspectives from recent interdisciplinary studies. Frontiers in neuroscience, 10, 385. 34) Effenberg, A.O., Fehse, U., Schmitz, G., et al. (2016). Movement "sonification": effects on motor learning beyond rhythmic adjustments. Frontiers in neuroscience, 10, 219.
35) Friedman, N., Chan, V., Reinkensmeyer, A.N., et al. (2014). Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. Journal of neuroengineering and rehabilitation, 11(1), 1-14. 36) Zondervan, D.K., Friedman, N., Chang, E., et al. (2016). Homebased hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. Journal of rehabilitation research and development, 53(4), 457-472. DOI: https://doi.org/10.1186/1743-0003-11-76
37) Scholz, D.S., Wu, L., Pirzer, J., et al. (2014). "sonification" as a possible stroke rehabilitation strategy. Frontiers in neuroscience, 8, 332. 38) Scholz, D.S., Rhode, S., Großbach, M., et al. (2015). Moving with music for stroke rehabilitation: a "sonification" feasibility study. Annals of the New York Academy of Sciences, 1337(1), 69-76. of arm movements in stroke rehabilitation-a novel approach in neurologic music therapy. Frontiers in neurology, 7, 106. DOI: https://doi.org/10.1111/nyas.12691
40) Scholz, D.S., et al. "sonification" of Arm Movements in Stroke Rehabilitation - A Novel Approach in Neurologic Music Therapy. Front. Neurol. 7:106 (2016). DOI: https://doi.org/10.3389/fneur.2016.00106
41) Schmitz, G., Bergmann, J., Effenberg, A.O., et al. (2018). Movement "sonification" in stroke rehabilitation. Frontiers in neurology, 9, 389. 42) Ghai, S., Schmitz, G., Hwang, T.H., et al. (2018). Auditory proprioceptive integration: effects of real-time kinematic auditory feedback on knee proprioception. Frontiers in neuroscience, 12, 142. 43) Effenberg, A.O., & Schmitz, G. (2018). Acceleration and deceleration at constant speed: systematic modulation of motion perception by kinematic "sonification". Annals of the New York Academy of Sciences 1425 (2018), Nr. 1.
44) Nikmaram, N., Scholz, D.S., Großbach, M., et al. (2019). Musical "sonification" of arm movements in stroke rehabilitation yields limited benefits. Frontiers in neuroscience, 13, 1378. DOI: https://doi.org/10.3389/fnins.2019.01378
45) Reh, J., Hwang, T.H., Schmitz, G., et al. (2019). Dual Mode Gait "sonification" for Rehabilitation After Unilateral Hip Arthroplasty. Brain sciences, 9(3), 66. https://doi.org/10.3390/brainsci9030066 46) Kwakkel, G., & Kollen, B.J. (2013). Predicting Activities after Stroke: What is Clinically Relevant? International Journal of Stroke, 8(1), 25-32. https://doi.org/10.1111/j.1747-4949.2012.00967.x 47) Kwakkel, G. (2006). Impact of intensity of practice after stroke: issues for consideration. Disability and rehabilitation, 28(13-14), 823-830.
1051-1054.
49) Street, A., Zhang, J., Pethers, S., et al. (2020). Neurologic music therapy in multidisciplinary acute stroke rehabilitation: Could it be feasible and helpful?. Topics in stroke rehabilitation, 27(7), 541-552. DOI: https://doi.org/10.1080/10749357.2020.1729585
50) Colombo, R., Raglio, A., Panigazzi, M., et al. (2019). The SonicHand Protocol for Rehabilitation of Hand Motor Function: A Validation and Feasibility Study. IEEE transactions on neural systems and rehabilitation engineering: a publication of the lEBE Engineering in Medicine and Biology Society, 27(4), 664-672. https://doi.org/10.1109/TNSRE.2019.2905076 DOI: https://doi.org/10.1109/TNSRE.2019.2905076
1) Schaffert, N., Braun Janzen, T., Ploigt, R., Schluter, S., Vuong, naut, M.H. (2020) Development and evaluation of a novel musi based therapeutic device for upper extremity movement training: A pre-clinical, single-arm trial. PLoS ONE 15(11): e0242552. https://doi.org/ 10.1371/journal.pone.0242552 2) Partesotti, E., Peñalba, A., & Manzolli, J. 2018). Digital instrumen d their uses in music therapy. Nordic Journal of Music Therap 27(5), 399-418. DOI: https://doi.org/10.1371/journal.pone.0242552
3) Magee, W.L., & Burland, K. (2008). An exploratory study of the us t electronic music technologies in clinical music therapy. Nordi Journal of Music Therapy, 17(2), 124-141. DOI: https://doi.org/10.1080/08098130809478204
-) Ward, A., Davis, T., & Bevan, A. (2019). Music technology al ternate controllers for clients with complex needs. Music Therat DOI: https://doi.org/10.1093/mtp/miz006
Perspectives, 37(2), 151-168.
55) Magee, W.L., & Burland, K. (2008). Using electronic music technologies in music therapy: Opportunities, limitations and clinical indicators. British Journal of Music Therapy, 22(1), 3-15. 56) Raglio, A., Panigazzi, M., Colombo, R., et al. (2021). Hand rehabilitation with "sonification" techniques in the subacute stage of stroke. Scientific reports, 11(1), 7237. https://doi.org/10.1038/s41598-021-86627-y 57) Magee, W.L., & Burland, K. (2008). Using electronic music technologies in music therapy: Opportunities, limitations and clinical indicators. British Journal of Music Therapy, 22(1), 3-15. 58) Pollock, A., Farmer, S.E., Brady, M.C., et al. (2014). Interventions for improving upper limb function after stroke. Cochrane Database of Systematic Reviews, (11). DOI: https://doi.org/10.1177/135945750802200102
9) Kwakkel, G., & Kollen, B.J. (2013). Predicting activities afte roke: what is clinically relevant?. International Journal of strok
8(1), 25-32.
60) Linnhoff, D., Alizadeh, S., Schaffert, N., et al. (2020). Use of coustic Feedback to Change Gait Patterns: Implementation a anster to Motor Learning Theory—A Scoping Review. Journal DOI: https://doi.org/10.1123/jmld.2019-0028
Motor Learning and Development, 1(aop), 1-21.
61) Guerra, J., Smith, L., Vicinanza, D., et al. (2020). The use of "sonification" for physiotherapy in human movement tasks: a scoping review. Science & Sports, 35(3), 119-129. DOI: https://doi.org/10.1016/j.scispo.2019.12.004
62) Shen, X., & Mak, M.K. (2014). Balance and gait training with gmented feedback improves balance confidence in people wi rkinson's disease: a randomized controlled trial. Neurorehabilitati and neural repair, 28(6), 524-535. DOI: https://doi.org/10.1177/1545968313517752
63) Piron, L., Tonin, P., Atzori, A.M., et al. (2003). The augmentedfeedback rehabilitation technique facilitates the arm motor recovery in patients after a recent stroke. Studies in health technology and informatics, 94, 265-267.
64) Ghai, S., & Ghai, I. (2019). Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: A systematic review & dose-response meta-analysis. Scientific reports, 9(1), 1-11. DOI: https://doi.org/10.1038/s41598-019-38723-3
65) Ghai, S., Ghai, I., Schmitz, G., et al. (2018). Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and metaanalysis. Scientific reports, 8(1), 1-19. DOI: https://doi.org/10.1038/s41598-017-16232-5
66) Brodie, M.A., Dean, R.T., Beijer, T.R., et al. (2015). Symmetry matched auditory cues improve gait steadiness in most people with Parkinson's disease but not in healthy older people. Journal of arkinson's disease. 5(1). 105-116 DOI: https://doi.org/10.3233/JPD-140430
7) Baram, Y.. & Miller, A. (2007). Auditory feedback control fo improvement of gait in patients with Multiple Sclerosis. Journal of the neurological sciences, 254(1-2), 90-94. disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 543-548. DOI: https://doi.org/10.1016/j.jns.2007.01.003

How to Cite



[Neuromotor rehabilitation with “sonification” techniques]. (2025). Giornale Italiano Di Medicina Del Lavoro Ed Ergonomia, 43(3), 42-46. https://doi.org/10.4081/gimle.549