Original Articles
20 February 2025
Vol. 41 No. 3 (2019)

[The European Union's ‘new carcinogens directive’: the commitments ahead, the new opportunities that lie ahead (and we must not waste) in Italy]

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
32
Views
17
Downloads

Authors

The new EU directive on the protection of workers from the risks related to exposure to carcinogens and mutagens at work, issued on December 2017, will be integrated inside the Member States' national laws not later than 17th January 2020. The new directive brings in force new binding occupational exposure limit values (BOELVs) for several agents, some of great importance such as hard wood dusts, a set of hexavalent chromium compounds and crystalline silica dust; for some cases, the entry into force of the new limits is delayed in time. The new directive clarifies that the limit values are established considering factors distinct from health necessities too.
The Member States are bound to adopt national limit values not exceeding the corresponding EU ones, but are empowered to lower them. It is essential that the control of the actual respect of the limit values results not only from the application of theoretic previsional models, but is entrusted mainly to high quality exposure measurements and to estimates directly derived from measurements, on the base of publicly available JEMs. The specific health surveillance to be provided to any person both exposed and previously exposed to carcinogens at work should not be limited to proper oncological screening actions, but should include programs for biological monitoring of both exposures and related pre-neoplastic effects, every time any of these is possible and useful. A fair mapping of the exposures to carcinogens and mutagens at work and a systematical registration of cases of cancers attributable to occupational exposures will be placed side to side.

Altmetrics

Downloads

Download data is not yet available.

Citations

1) Gazzetta Ufficiale dell'Unione Europea 28.12.2017, L 345/87 - L 345/95.
2) Calisti R Il significato dei valori limite d'esposizione professionale per gli agenti chimici pericolosi in raffronto ai DNEL e DMEL. in Atti del Convegno Nazionale RisCh'2014, Modena 18 Settembre 2014: 211-238.
3) Tynkkynen S, Santonen T, Stockmann-Juvala H. A comparison of REACH-derived no-effect levels for workers with EU indicative occupational exposure limit values and national limit values in Finland. Ann Occup Hyg 2015; 59(4): 401-15 4) Kromhout H Hygiene without numbers. Ann Occup Hyg 2016; 60(4): 403-4.
5) Loomis D, Kromhout H. Exposure variability: concepts anc applications in occupational epidemiology. Am J Ind Med 2004; 45: 113-22. DOI: https://doi.org/10.1002/ajim.10324
6) Nieuwenhuijsen MJ. Introduction to exposure assessment. In lieuwenhuijsen MJ (ed) "Exposure assessment in occupational an nvironmental epidemiology". Oxford, Oxford University Pres 2003: 3-19. DOI: https://doi.org/10.1093/acprof:oso/9780198528616.003.0001
7) Armstrong B. Exposure measurement error: consequences. In Nieuwenhuijsen MJ (ed) "Exposure assessment in occupational and environmental epidemiology". Oxford, Oxford University Press, 2003: 181-200. DOI: https://doi.org/10.1093/acprof:oso/9780198528616.003.0012
8) Teschke K. Exposure surrogates: job exposure matrices, self-reports, and expert evaluations. In Nieuwenhuijsen MJ "Exposure assessment in occupational and environmental epidemiology". Oxford, Oxford University Press, 2003: 119 -132. DOI: https://doi.org/10.1093/acprof:oso/9780198528616.003.0008
9) Lavouè J, Pintos J, Van Tongeren M, et al. Comparison of the exposure estimates in the Finnish job-exposure matrix FINJEM with a JEM derived from expert assessments performed in Montreal. Occup Environ Med 2012; 69(7): 475-71 10) Benke G, Sim M, Fritschi L, et al. Comparison of occupational exposure using three different methods: hygiene panel, job exposure matrix (JEM), and self reports. Appl Occup Environ Hyg, 2001; 11) Kauppinen T, Uuksulainen S, Saalo A, Makinen I. Trends of occupational exposure to chemical agents in Finland in 1950 - 2020. Ann Occ Hyg 2013; 57(5): 593-609.
12) Peters S, Vermeulen S, Portengen L, et al. SYN-JEM: a quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg 2016; 60(7): 795-811).
13) Hengstler JG, Bogdanffy MS, Bolt HM, Oesch F. Challenging dogma: thresholds for genotoxic carcinogens? The case of vinyl acetate. Annu Rev Pharmacol Toxicol 2003; 43: 485-520. DOI: https://doi.org/10.1146/annurev.pharmtox.43.100901.140219
14) Thomas AD, Fahrer J, Johnson GE, Kaina B. Theoretical considerations for thresholds in chemical carcinogenesis. Mutat Res Rev Mutat Res 2015; 765: 56-67. DOI: https://doi.org/10.1016/j.mrrev.2015.05.001
15) Cleweel RA, Andersen ME. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro. Mutagenesis 2016; 31(3): 333-40. DOI: https://doi.org/10.1093/mutage/gev078
16) Trosko JE, Carruba G. "Bad luck mutations": DNA mutations are not the whole answer to understanding cancer risk. Dose Response 2017; 15(2): 1559325817716585. DOI: https://doi.org/10.1177/1559325817716585
17) Loser T. Process analysis of carcinogenesis: concept derivation of the tissue function "preservation of a homogeneous gene expression". Theory Biosci 2018; 137(1): 85-97. DOI: https://doi.org/10.1007/s12064-017-0256-z
18) Bevan RJ, Harrison PTC. Threshold and non-threshold chemical carcinogens: a survey of the present regulatory landscape. Regul Toxicol Pharmacol 2017; 88: 291-302. DOI: https://doi.org/10.1016/j.yrtph.2017.01.003
19) Pisaniello DL, Connell KE, Muriale L. Wood dust exposure during furniture manufacture - results from an Australian survey and considerations for threshold limit value development. Am J Ind Hyg Assoc J 1991; 52(11): 485-92. DOI: https://doi.org/10.1202/0002-8894(1991)052<0485:WDEDFM>2.0.CO;2
20) Innocenti A. Un "tecnicamente ottenibile" livello di riferimento per esposizione a polvere di legno dopo il Digs 66/2000. Med Lav 2000; 91(6): 565-74.
21) Vallières E, Pintos J, Parent ME, Siemiatycki J. Occupational exposures to wood dust and risk of lung cancer in two population-based case-control studies in Montreal, Canada. Environ Health 2015; 14: 1. DOI: https://doi.org/10.1186/1476-069X-14-1
22) Crump C, Crump K, Hack E, et al. Dose-response and risk assessment of airborne hexavalent chromium and lung cancer mortality. Risk Anal 2003; 23(6): 1147-63. DOI: https://doi.org/10.1111/j.0272-4332.2003.00388.x
23) Park RM, Bena JF, Stayner LI, et al. Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Anal 2004; 24(5): 1099-108. DOI: https://doi.org/10.1111/j.0272-4332.2004.00512.x
24) Park RM, Stayner LT. A search for thresholds and other nonlinearities in the relationship between hexavalent chromium and lung cancer. Risk Anal 2006; 26(1): 798-88. DOI: https://doi.org/10.1111/j.1539-6924.2006.00709.x
25) Haney JT Jr, Erraguntla N, Sielken RL Jr, Valdez-Flores C. Development of a cancer-based chronic inhalation reference value for hexavalent chromium based on a nonlinear-threshold carcinogenic assessment. Regul Toxicol Pharmacol 2012; 64(3): 466-80. DOI: https://doi.org/10.1016/j.yrtph.2012.10.008
26) Kuempel ED, Tran CL, Bailer AJ, et al. Biological and statistical approaches to predicting human lung cancer from silica. J Environ Pathol Toxicol Oncol 2001; 20 Suppl 1: 15-32 27) Steenland K, Mannetje A, Boffetta P, et al. Pooled exposureresponse analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control 2001; 12(9): 773-84. DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.v20.iSuppl.1.20
28) Borm PJ, Tran L, Donaldson K. The carcinogenic action of crystalline silica: a review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism. Crit Rev Toxicol 2011; 41(9): 756-70. DOI: https://doi.org/10.3109/10408444.2011.576008
29) Borm PJ, Fowler P, Kirkland D. An updated review of the genotoxicity of respirable crystalline silica. Part Fibre Toxicol 2018; 15(1): 15(1): 23. DOI: https://doi.org/10.1186/s12989-018-0259-z
30) Sutou S [Tremendous human, social and economic losses caused by obstinate application of the failed linear no-threshold modell [Article in Japanese]. Yakugaku Zasshi 2016; 135(11): 1197-211. 31) Boice JD Jr. The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update. Int J Radiat Biol 2017; 93(10): 1079-92. DOI: https://doi.org/10.1248/yakushi.15-00188
32) Piotrowski I, Kulcenty K, Suchorska VVM, et al. Carcinogenesis induced by low-dose radiation. Radiol Oncol 2017; 51(4): 369-77. 33) Siegel JA, Pennington CW, Sacks B, Welsh JS. The birth of illegitimate linear no-threshold model: an invalid paradigm for estimating risk following low-dose radiation exposure. Am J Clin Oncol 2018; 41(2): 173-7. DOI: https://doi.org/10.1097/COC.0000000000000244
34) Vineis P. Epidemiology of cancer from exposure to arylamines. Environ Health Perspect 1994; 102 Suppl. 6: 7-10. DOI: https://doi.org/10.1289/ehp.94102s67
35) Ollier M, Chamoux A, Naughton G, et al. Chest TC scan screening for lung cancer in asbestos occupational exposure: a systematic review and meta-analysis. Chest 2014; 145(6): 1339-46. DOI: https://doi.org/10.1378/chest.13-2181
36) Fitzgerald NR, Flanagan WM, Evans WK, et al. Eligibility for lowdose computerized tomography screening among asbestos-exposed individuals. Scand J Work Environ Health 2015; 41(4): 407-12. 37) Hofmann-Preiß K, Rehbock B [Early recognition of lung cancer in workers occupationally exposed to asbestos] [Article in German]. Radiologie 2016; 56(9): 810-6. DOI: https://doi.org/10.5271/sjweh.3496
38) Larré S, Catto JW, Cookson MS, et al. Screening for bladder cancer: rationale, limitations, whom to target, and perspectives. Eur Urol 2013; 63(6); 1049-58. DOI: https://doi.org/10.1016/j.eururo.2012.12.062
39) Schmitz-Drager BJ, Droller M, Lokeshwar VB, et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus. Urol Int 2015; 94(1): 1-24. 40) Taiwo OA, Slade MD, Cantley LF, et al. Bladder cancer screening in aluminium smelter workers. J Occup Environ Med 2015; 57(4): 421-7. 41) Pukkala E, Guo J, Kyyronen P, et al. National job-exposure matrix in analyses of census-based estimates of occupational cancer risk. Scand J Work Environ Health 2005; 31(2): 97-107. DOI: https://doi.org/10.5271/sjweh.856
42) Kauppinen T, Uuksulainen S, Saalo A, et al. Use of the Finnish Information System on Occupational Exposure (FINJEM) in epidemiologic, surveillance, and other applications. Ann Occup Hyg 2014; 58(3): 380-96.
43) Offermans NS, Vermeulen R, Burdorf A, et al. Occupational asbestos exposure and risk of oral cavity and pharyngeal cancer in the prospective Netherlands Cohort Study. Scand J Work Environ Health 2014; 40(4): 420-7. DOI: https://doi.org/10.5271/sjweh.3434
44) van Tongeren M, Kinci L, Richardson L, et al. INTEROCC STUDY GROUP Assessing occupational exposure to chemicals in an international epidemiological study of brain tumors. Ann Occup Hyg 2013; 57(5): 610-26.
45) Peters S, Vermeulen R, Portengen L, et al. SYN-JEM: a quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg 2016; 60(7): 795-811. DOI: https://doi.org/10.1093/annhyg/mew034
46) Fevotte J, Dananché B. Delabre L, et al. Matgéné: a program to develop job-exposure matrices in the general population in France. Ann Occup Hyg 2011; 55(8): 865-78. DOI: https://doi.org/10.1136/oemed-2011-100382.256
47) Gaffuri E. Alla ricerca dei tumori perduti. Med Lav 1988; 79(1): 82.

How to Cite



[The European Union’s ‘new carcinogens directive’: the commitments ahead, the new opportunities that lie ahead (and we must not waste) in Italy]. (2025). Giornale Italiano Di Medicina Del Lavoro Ed Ergonomia, 41(3), 193-201. https://doi.org/10.4081/gimle.558