Case Reports
25 September 2019
Vol. 41 No. 3 (2019)

100 Hz localized vibration increases ipsilateral cerebellar areas activity during a motor task in healthy subjects: three cases reports

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
20
Views
12
Downloads

Authors

Background and Purpose. The exact mechanism thought which Localized vibration (LV) acts on the motor system at the suprasegmental level is still poorly understood. In this paper we have reported three cases of healthy men exposed to 100 Hz localized vibration during a motor task.
Case Description. This case report describes 3 healthy men (age 23 years).
Outcomes. During fMRI participants were engaged in a right-hand self-paced finger tapping (FT) task, with and without a 100 Hz. LV of the right hand. After standard images preprocessing and normalization, a fix-effect GLM analysis was used to test the effect of vibratory stimulation on motor network. A bilateral activation, greater in the left hemisphere than in the right one, in the frontal premotor and supplementary motor areas (SMA), central gyrus (MI), postcentral gyrus, was found without any statistical significance between conditions.
Activation in the left lenticular nucleus and thalamus was also found without differences between conditions. When using the FT activation map as a mask, the analysis showed that only the right cerebellum correlate positively with the vibratory stimulation.
Discussion. Using fMR a localized vibratory stimulus was found to significantly increase the activity in homo-lateral motor cerebellar areas during a motor task. This finding aims to trigger new studies on how a LV can influence motor recovery in neurorehabilitation and to (re) consider the role of cerebellum in the rehabilitation strategy.

Altmetrics

Downloads

Download data is not yet available.

Citations

1) Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev
Neurosci 2011; 12: 139-153. DOI: https://doi.org/10.1038/nrn2993
2) Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007; 445: 858-865. DOI: https://doi.org/10.1038/nature05662
3) van der Molen HF, Foresti C, Daams JG, Frings-Dresen MHW, Kuijer PPFM. Work-related risk factors for specific shoulder disorders: a systematic review and meta-analysis. Occup Environ Med 2017 Oct; 74(10): 745-755. DOI: https://doi.org/10.1136/oemed-2017-104339
4) Nilsson T, Wahlström J, Burström L. Hand-arm vibration and the risk of vascular and neurological diseases-A systematic review and meta-analysis. PLoS One 2017 Jul 13; 12(7): e0180795. DOI: https://doi.org/10.1371/journal.pone.0180795
5) Peretti A, Bonomini F, Pasqua di Bisceglie A. Forklifts: vibrations, drivers exposure, interventions to reduce risk.G Ital Med Lav Ergon 2012 Jul-Sep; 34(3): 335-42.
6) Riolfi A, Perbellini L. The combined use of capillaroscopy and skin thermometry in health surveillance of workers exposed to hand-arm vibration. G Ital Med Lav Ergon 2010 Oct-Dec; 32(4 Suppl): 153-5. 7) Casale R. Focal, local or segmental vibration: a commentary on Murillo and Coworkers review. Eur J Phys Rehabil Med. 2014 Sep 30. [Epub ahead of print] 8) Lance JW. The effect of vibration on afferent nerve conduction and spinal reflex mechanisms. Electroencephalogr Clin Neurophysiol 1968; 25(4): 407-8.
9) Lundeberg T, Nordemar R, Ottoson D. Pain alleviation by vibratory stimulation. Pain 1984; 20(1): 25-44. DOI: https://doi.org/10.1016/0304-3959(84)90808-X
10) Lundeberg T. Relief of pain from a phantom limb by peripheral stimulation. J Neurol 1985; 232(2): 79-82. DOI: https://doi.org/10.1007/BF00313905
11) Vibration therapy for pain. Editorial. Lancet 1992; 339(8808): 1513-4. 12) Yarnitsky D, Kunin M, Brik R, Sprecher E. Vibration reduces thermal pain in adjacent dermatomes. Pain 1997; 69(1-2): 75-7. DOI: https://doi.org/10.1016/S0304-3959(96)03250-2
13) Hollins M, Roy EA, Crane SA. Vibratory antinociception: effects of vibration amplitude and frequency. J Pain 2003; 4(7): 381-91. 14) Constantino C, Galuppo L, Romiti D. Efficacy of mechano-acoustic vibration on strength, pain, and function in poststroke rehabilitation: a pilot study. Top Stroke Rehabil 2014; 21(5): 391-9. DOI: https://doi.org/10.1310/tsr2105-391
15) Hollins M, McDermott K, Harper D. How does vibration reduce pain? Perception 2014; 43(1): 70-84. DOI: https://doi.org/10.1068/p7637
16) Marconi B, Filippi GM, Koch G, Giacobbe V, Pecchioli C, Versace V, Camerota F, Saraceni VM, Caltagirone C. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients. Neurorehabil Neural Repair 2011 Jan; 25(1): 48-60. DOI: https://doi.org/10.1177/1545968310376757
17) Caliandro P, Celletti C, Padua L, Minciotti I, Russo G, Granata G, La Torre G, Granieri E, Camerota F. Focal muscle vibration in the treatment of upper limb spasticity: a pilot randomized controlled trial in patients with chronic stroke. Arch Phys Med Rehabil 2012; 93(9): 1656-61. DOI: https://doi.org/10.1016/j.apmr.2012.04.002
18) Tavernese E, Paoloni M, Mangone M, Mandic V, Sale P, Franceschini M, Santilli V. Segmental muscle vibration improves reaching movement in patients with chronic stroke. A randomized controlled trial. NeuroRehabilitation 2013; 32(3): 591-9. DOI: https://doi.org/10.3233/NRE-130881
19) Casale R, Damiani C, Maestri R, Fundarò C, Chimento P, Foti C. Localized 100 Hz vibration improves function and reduces upper limb spasticity: a double-blind controlled study. Eur J Phys Rehabil Med 2014; 50(5): 495-504.
20) Murillo N, Valls-Sole J, Vidal J, Opisso E, Medina J, Kumru H. Focal vibration in neurorehabilitation. Eur J Phys Rehabil Med 2014; 50(2): 231-42.
21) Casale R, Ring H, Rainoldi A. High frequency vibration conditioning stimulation centrally reduces myoelectrical manifestation of fatigue in healthy subjects. J Electromyogr Kinesiol 2009; 19(5): 998-1004. 22) Desmedt JE. Mechanisms of vibration-induced inhibition or potentiation: tonic vibration reflex and vibration paradox in man. Adv Neurol 1983; 39: 671-83. DOI: https://doi.org/10.1016/j.jelekin.2008.08.002
23) Day Bl, Marsden CD, Obeso JA, Rothwell JC. Reciprocal inhibition between the muscles of the human forearm. J Physiol 1984; 349: 519-34. 24) Cody FW, Henley NC, Parker L, Turner G. Phasic and tonic reflexes evoked in human antagonistic wrist muscles by tendon vibration. Electroencephalogr Clin Neurophysiol 1998; 109: 24-5. DOI: https://doi.org/10.1016/S0924-980X(97)00063-5
25) Schieppati, M. The Hoffmann reflex: A means of assessing spinal reflex excitability and its descending control in man. Progress in Neurobiology 1987; 28(4): 345-376 26) Stefanescu MR, Thürling M, Maderwald S, Wiestler T, Ladd ME, Diedrichsen J, Timmann D. A 7T fMRI study of cerebellar activation in sequential finger movement tasks. Exp Brain Res 2013; 228: 243-54. 27) Yoon Gi Chung, Junsuk Kim, Sang Woo Han, Hyung-Sik Kim, Mi Hyun Choi, Soon-Cheol Chung, Jang- Yeon Park, Sung-Phil Kim. Frequency dependent patterns of somato sensory cortical responses to vibrotactile stimulation in humans: A fMRI study. Brain Res 2013; 1504: 47-57. 28) Harrington GS, Hunter Downs J. III FMRI mapping of the somatosensory cortex with vibratory stimuli Is there a dependency on stimulus frequency? Brain Res 2001; 897: 188-192.
29) Goebel R, Esposito F, Formisano E. Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From singlesubject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 2006; 27: 392-401. DOI: https://doi.org/10.1002/hbm.20249
30) Johansson RS, Vallbo AB. Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 1980; 184: 353-366. DOI: https://doi.org/10.1016/0006-8993(80)90804-5
31) Strother SC, Anderson JR, Xu XL, Liow JS, Bonar DC, Rottenberg DA. Quantitative comparisons of image registration techniques based on high-resolution MRI of the brain. J Comput Assist Tomogr 1994; 18: 954-62. DOI: https://doi.org/10.1097/00004728-199411000-00021
32) Migneco O, Darcourt J, Benoliel J, Martin F, Robert P, BussiereLapalus F, Mena I. Computerized localization of brain structures in single photon emission computed tomography using a proportional anatomical stereotactic atlas. Comput Med Imaging Graph 1994; 18: 413-22. DOI: https://doi.org/10.1016/0895-6111(94)90078-7
33) Causby R, Reed L, McDonnell M, Hilljier S. Use of objective psychomotor tests in health professionals. Percept Mot Skills 2014; 118: 765-804. DOI: https://doi.org/10.2466/25.27.PMS.118k27w2
34) Maldjian JA, Gottschalk A, Patel RS, Pincus D, Detre JA, Alsop DC. Mapping of secondary somato sensory cortex Brain Res 1999; 824(2): 291-5. DOI: https://doi.org/10.1016/S0006-8993(99)01126-9
35) Nguyen HD, McLachlan GJ, Cherbuin N, Janke AL. False discovery rate control in magnetic resonance imaging studies via Markov random fields. IEEE Trans Med Imaging 2014; 33: 1735-48. DOI: https://doi.org/10.1109/TMI.2014.2322369
36) Disbrow E, Roberts T, Krubitzer L. Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 2000; 418: 1-21. DOI: https://doi.org/10.1002/(SICI)1096-9861(20000228)418:1<1::AID-CNE1>3.0.CO;2-P
37) Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A. Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 2001; 11: 463-73. 38) Kopietz R, Sakar V, Albrecht J, Kleemann AM, Schopf V, Yousry I, Linn J, Fesl G, Wiesmann M. Activation of primary and secondary somatosensory regions following tactile stimulation of the face. Clin Neuroradiol 2009: 19: 135-144.
39) Hu L, Zhang ZG, Hu Y. A time-varying source connectivity approach to reveal human somatosensory information processing. Neuroimage 2012; 62: 217-228. DOI: https://doi.org/10.1016/j.neuroimage.2012.03.094
40) Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB. The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 1968; 31: 301-34. DOI: https://doi.org/10.1152/jn.1968.31.2.301
41) Bolanowski Jr. SJ, Gescheider GA, Verrillo RT, Checkosky CM. Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 1988; 84: 1680-1694. DOI: https://doi.org/10.1121/1.397184
42) Gescheider GA, Bolanowski SJ, Hardick KR The frequency selectivity of information-processing channels in the tactile sensory system. Somatosens Mot Res 2001; 18: 191-201. DOI: https://doi.org/10.1080/01421590120072187
43) Chen LM, Friedman R, Roe AW. Somatosensory: imaging tactile perception. In Roe AW (Ed) Imaging the Brain with Optical Methods. Springer Verlag, 2010; 65-92. DOI: https://doi.org/10.1007/978-1-4419-0452-2_4
44) Tommerdahl M, Favorov OV, Whitsel BL. Dynamic representations of the somatosensory cortex. Neurosci Biobehav Rev 2010; 34: 160-7. 45) Lance JW, De Gail P, Neilson PD. Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscles in man. J Neurol Neurosurg Psychiatry 1966; 29: 1-11. DOI: https://doi.org/10.1136/jnnp.29.1.1
46) Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man. Exp Neurol 1966; 16: 80-92. DOI: https://doi.org/10.1016/0014-4886(66)90088-4
47) Delwade PJ. Human monosynaptic reflexes and presynaptic inhibition. In: Desmedt JE (Ed) New Development in Electromyography and Clinical Neurophysiology. Basel: Karger; 1973; vol 3: 508-522. 48) Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E. Perceptual correlates of changes in cortical rapresentation of fingers in blind multifinger Braille readers. J Neurosci 1998; 18: 4417-23. 49) Flor H. Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 2003; 41: 66-72.
50) Elbert T, Rockstroh B. Reorganization of human cerebral cortex: the range of changes following use and injury. The neuroscientist 2004; 10: 129-41. DOI: https://doi.org/10.1177/1073858403262111
51) Leicht R, Rowe MJ, Schmidt RF. Mossy and climbing fiber inputs from cutaneous mechanoreceptors to cerebellar Purkynjē cells in unanesthetized cats. Exp Brain Res 1977; 27: 459-77. DOI: https://doi.org/10.1007/BF00239036
52) Garwicz M, Jorntell H, Ekerot CF. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J Physiol 1998; 512: 277-93. DOI: https://doi.org/10.1111/j.1469-7793.1998.277bf.x
53) Lucier GE, Rüegg DC, Wiesendanger M. Responses of neurones in motor cortex and in area 3A to controlled stretches of forelimb muscles in cebus monkeys. J Physiol 1975; 251: 833-53. DOI: https://doi.org/10.1113/jphysiol.1975.sp011125

How to Cite



100 Hz localized vibration increases ipsilateral cerebellar areas activity during a motor task in healthy subjects: three cases reports. (2019). Giornale Italiano Di Medicina Del Lavoro Ed Ergonomia, 41(3), 255-259. https://doi.org/10.4081/gimle.566