Original Articles
4 March 2025
Vol. 39 No. 4 (2017)

[Thermal comfort and indoor air quality in some workplaces of the Polizia di Stato (State Police) in Italy]

Comfort termico e qualità dell’aria indoor in alcuni ambienti di lavoro della Polizia di Stato in Italia

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
25
Views
19
Downloads

Authors

Introduction. Little can be found in the literature about thermal comfort and indoor air quality (IAQ) in law enforcement workplaces. This study, based on environmental surveys carried out by the Centro Sanitario Polifunzionale of Milan (Italian State Police Health Service Department), aims to assess the thermal comfort and IAQ in some of the Italian State Police workplaces. Materials and methods. Measurements were performed in some indoor workplaces such as offices, archives, laboratories and guard-houses in various regions (Lombardia, Emilia Romagna, Liguria, Veneto, Trentino Alto-Adige) of Northern Italy. The PMV/PPD model developed by Fangar for the evaluation of the thermal comfort was used. We measured both CO2 concentration and relative humidity indoor levels for the evaluation of IAQ. We used Chi square and t Student tests to study both prevalence of thermal discomfort and low IAQ, and their differences between summer and winter.
Results. For the purposes of the present study we carried out 488 measurements in 36 buildings (260 in winter and 228 in summer). Our results showed that thermal comfort was reached in 95% and 68% of environmental measurements (in winter and summer, respectively). In summer, we measured different types of thermal discomfort (it was almost always ranged ‡0,7<PMV < or 1<PMV<2). As regard to IAQ, CO2 exceeded the threshold limit value (1000 ppm) in 39% (winter) and 9% (summer) of our measurements. Chi-square test showed a statistically significant difference (p<.0001) between summer and winter for all outcomes considered. Indeed, thermal comfort was better in winter than summer (X} = 61.0795), while IAQ was found to be better in the summer than winter considering both the CO2 1000 ppm and 1200 ppm threshold values (X} = 56.9004 and X? = 8.8845 respectively, p<.0001). Prevalence of low relative humidity (RH<30%) in winter was higher than in summer (X} = 124.7764, p<.0001).
Conclusions. Even though this study did not report any situation of risk to Italian police officers health and safety, it has highlighted some potential issues in some of the examined workplaces, concerning thermal comfort in summer and IAQ in winter. Regarding the risk assessment process, simple and inexpensive preventive measures are already feasible in the 'observation phase' of the risk assessment, before execution of instrumental environmental survey. According to the technical standards and risk assessment models, this way might increase both comfort levels for workers employed in indoor environments and the effectiveness of the risk assessment process, through the optimization of available resources.

Altmetrics

Downloads

Download data is not yet available.

Citations

1) Rupp RF, Vásquez NG, Lamberts R. A review of human thermal comfort in the built environment. Energy Build 2015; 105: 178-205. doi: 10.1016/j.enbuild.2015.07.047. DOI: https://doi.org/10.1016/j.enbuild.2015.07.047
2) Dahlan ND, Gital YY. Thermal sensations and comfort investigations in transient conditions in tropical office. Appl Ergon 2016 May; 54: 169-76. doi: 10.1016/j.apergo.2015.12.008. DOI: https://doi.org/10.1016/j.apergo.2015.12.008
3) Erlandson T, Cena K, De Dear R, et al. Environmental and human factors influencing thermal comfort of office occupants in hot - humid and hot - arid climates. Ergonomics 2003 May 15; 46(6): 616-28. 4) Fang L, Wyon DP, Clausen G, et al. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air 2004; 14 Suppl 7: 74-81. DOI: https://doi.org/10.1080/0014013031000085707
5) Melikov A, Pitchurov G, Naydenov K, et al. Field study on occupant comfort and the office thermal environment in rooms with displacement ventilation. Indoor Air 2005 Jun; 15(3): 205-14. DOI: https://doi.org/10.1111/j.1600-0668.2005.00337.x
6) Mendell MJ, Mirer AG. Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study. Indoor Air 2009 Aug; 19(4): 291-302. doi: 10.1111/j.1600-0668.2009.00592.x. 7) Yang W, Zhang G. Thermal comfort in naturally ventilated and airconditioned buildings in humid subtropical climate zone in China. Int J Biometeorol 2008 May; 52(5): 385-98. DOI: https://doi.org/10.1111/j.1600-0668.2009.00592.x
8) Azmoon H, Dehghan H, Akbari J, et al. The relationship between thermal comfort and light intensity with sleep quality and eye tiredness in shift work nurses. J Environ Public Health 2013; 2013: 639184. doi: 10.1155/2013/639184. DOI: https://doi.org/10.1155/2013/639184
9) Dehghan H, Azmoon H, Souri S, et al. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. J Educ Health Promot 2014 Jun 23; 3: 72. doi: 10.4103/2277-9531.134870. DOI: https://doi.org/10.4103/2277-9531.134870
10) Hashiguchi N, Hirakawa M, Tochihara Y, et al. Thermal environment and subjective responses of patients and staff in a hospital during winter. J Physiol Anthropol Appl Human Sci 2005 Jan; 24(1): 111-5. DOI: https://doi.org/10.2114/jpa.24.111
11) Pourshaghaghy A, Omidvari M. Examination of thermal comfort in a hospital using PMV-PPD model. Appl Ergon 2012 Nov; 43(6): 1089-95. doi: 10.1016/j.apergo.2012.03.010. DOI: https://doi.org/10.1016/j.apergo.2012.03.010
12) Rodrigues NJ, Oliveira RF, Teixeira SF, et al. Thermal comfort assessment of a surgical room through computational fluid dynamics using local PMV index. Work 2015; 51(3): 445-56. doi: 10.3233/WOR-141882. DOI: https://doi.org/10.3233/WOR-141882
13) Yau YH, Chew BT, Yau YH, et al. Thermal comfort study of hospital workers in Malaysia. Indoor Air 2009 Dec; 19(6): 500-10. doi: 10.1111/j.1600-0668.2009.00617.x. DOI: https://doi.org/10.1111/j.1600-0668.2009.00617.x
14) Zwolinska M, Bogdan A. Thermal sensations of surgeons during work in surgical gowns. Int J Occup Saf Ergon. 2013; 19(3): 443-53. 15) Loupa G. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise. J Occup Environ Hyg 2013; 10(10): D135-46. doi: 10.1080/15459624.2013.818222. DOI: https://doi.org/10.1080/15459624.2013.818222
16) Mendes A, Pereira C, Mendes D, et al. Indoor air quality and thermal comfort-results of a pilot study in elderly care centers in Portugal. J Toxicol Environ Health 2013; 76(4-5): 333-44. doi: 10.1080/15287394.2013.757213. DOI: https://doi.org/10.1080/15287394.2013.757213
17) Fong ML, Lin Z, Fong KF, et al. Evaluation of thermal comfort conditions in a classroom with three ventilation methods. Indoor Air 2011 Jun; 21(3): 231-9. doi: 10.1111/j.1600-0668.2010.00693.x. DOI: https://doi.org/10.1111/j.1600-0668.2010.00693.x
18) Shek KW, Chan WT. Combined comfort model of thermal comfort and air quality on buses in Hong Kong. Sci Total Environ 2008 Jan 25; 389(2-3): 277-82. DOI: https://doi.org/10.1016/j.scitotenv.2007.08.063
19) Berardi BM, Giusti M, Leoni E, et al. Evaluation of working conditions at the work place with video terminals: a survey conducted in 6 business offices. G Ital Med Lav 1988 Mar; 10(2): 57-63.
20) Salamone F, Belussi L, Danza L, et al. An open source "Smart Lamp" for the optimization of plant systems and thermal comfort of offices. Sensors (Basel) 2016 Mar 7; 16(3). pii: E338. doi: 10.3390/s16030338. DOI: https://doi.org/10.3390/s16030338
21) De Giuli V, Zecchin R, Corain L, et al. Measured and perceived environmental comfort: field monitoring in an Italian school. Appl Ergon 2014 Jul; 45(4): 1035-47. doi: 10.1016/j.apergo.2014.01.004. 22) Langiano E, Lanni L, Atrei P, et al. Indoor air quality in school facilitiess in Cassino (Italy). Ig Sanita Pubbl 2008 Jan; 64(1): 53-66. 23) Buratti C, Paladino D, Ricciardi P. Application of a new 13-value thermal comfort scale to moderate environments. Applied Energy 2016; 180: 859-866. DOI: https://doi.org/10.1016/j.apergo.2014.01.004
24) Nico MA, Liuzzi S, Stefanizzi P. Evaluation of thermal comfort in university classrooms through objectiv approach and subjective preference analysis. Appl Ergon 2015 May; 48: 111-20. doi: 10.1016/j.apergo.2014.11.013 25) Martellotta F, Della Crociata S, Simone A, et al. Working conditions for supermarket employees: from experimental data to best practices. Med Lav 2014 Jul 15; 105(5): 323-36. DOI: https://doi.org/10.1016/j.apergo.2014.11.013
26) Del Ferraro S, lavicoli S, Russo S, et al. A field study on thermal comfort in an Italian hospital considering differences in gender and age. Appl Ergon 2015 Sep; 50: 177-84. doi: 10.1016/j.apergo. 2015.03.014. DOI: https://doi.org/10.1016/j.apergo.2015.03.014
27) Masia MD, Dettori M, Liperi G, et al. Thermal comfort in perioperatory risk's evaluation. Ann Ig 2009 May-Jun; 21(3): 251-8.
28) Sabbadini M, Verga M, Boglioni R, et al. New operating rooms: problems related with ventilation and air quality. G Ital Med Lav Ergon 2002 Oct-Dec; 24(4): 416-9.
29) Ricciardi P, Ziletti A, Buratti C. Evaluation of thermal comfort in an historical Italian opera theatre by the calculation of the neutral comfort temperature. Building and Environment 2016; 102: 116-127. 30) Giaconia C, Orioli A, Di Gangi A. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights. Appl Ergon 2015 May; 48: 202-13. doi: 10.1016/j.apergo.2014.12.003. DOI: https://doi.org/10.1016/j.apergo.2014.12.003
31) Majchrzycka K, Brochocka A, Luczak A, et al. Ergonomics assessment of composite ballistic inserts for bullet- and fragment-proof vests. Int J Occup Saf Ergon 2013; 19(3): 387-96. DOI: https://doi.org/10.1080/10803548.2013.11076995
32) Zimmermann C, Uedelhoven WH, Kurz B, et al. Thermal comfort range of a military cold protection glove: database by thermophysiological simulation. Eur J Appl Physiol 2008 Sep; 104(2): 229-36. doi: 10.1007/s00421-007-0660-z. DOI: https://doi.org/10.1007/s00421-007-0660-z
33) Lan L, Wargocki P, Wyon DP, et al. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air 2011 Oct; 21(5): 37690. doi: 10.1111/j.1600-0668.2011.00714.x. DOI: https://doi.org/10.1111/j.1600-0668.2011.00714.x
34) Magnavita N. Influence of work climate on the sick building syndrome. G Ital Med Lav Erg 2007; 29(3 Suppl): 658-660.
35) Tsai DH, Lin JS, Chan CC. Office workers' sick building syndrome and indoor carbon dioxide concentrations. J Occup Environ Hyg 2012; 9(5): 345-51. doi: 10.1080/15459624.2012.675291. DOI: https://doi.org/10.1080/15459624.2012.675291
36) UNI EN ISO 7730: 2006. Ergonomia degli ambienti termici Determinazione analitica e interpretazione del benessere termico mediante il calcolo degli indici PMV e PPD e dei criteri di benessere termico locale.
37) Istituto Superiore di Sanità. (2013). Strategie di monitoraggio dell'inquinamento di origine biologica dell'aria in ambiente indoor. Rapporti IstiSan 13/37. Accessibile all'indirizzo web: www.iss.it/binary/publ/cont/ (ultimo accesso il 12-08-2015).
38) Bono R, Piccioni P, Traversi D, et al. Urban air quality and carboxyhemoglobin levels in a group of traffic policemen. Sci Total Environ 2007 Apr 15; 376(1-3): 109-15. DOI: https://doi.org/10.1016/j.scitotenv.2007.01.086
39) Mirbod SM, Inaba R, Iwata H. Subjective symptoms among motorcycling traffic policemen. Scand J Work Environ Health 1997 Feb; 23(1): 60-3. DOI: https://doi.org/10.5271/sjweh.180
40) Priante E, Schiavon I, Boschi G, et al. Urban air pollutant exposure among traffic policemen. Med Lav 1996 Jul-Aug; 87(4): 314-22. 41) Proietti L, Mastruzzo C, Palermo F, et al. Prevalence of respiratory symptoms, reduction in lung function and allergic sensitization in a group of traffic police officers exposed to urban pollution. Med Lav 2005 Jan-Feb; 96(1): 24-32.
42) Pilidis GA, Karakitsios SP, Kassomenos PA, et al. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups. Environ Monit Assess 2009 Mar; 150(1-4): 285-94. doi: 10.1007/s10661-008-0230-9. DOI: https://doi.org/10.1007/s10661-008-0230-9
43) Redman T, Hamilton P, Malloch H, et al. Working here makes me sick! The consequences of sick building syndrome. Human Resource Management Journal 2011; 21(1): 14-27. DOI: https://doi.org/10.1111/j.1748-8583.2010.00155.x
44) Di Lorenzo L, Borraccia V, Corfiati M, et al. Lead exposure in firearms instructors of the Italian State Police. Med Lav 2010 Jan-Feb; 101(1): 30-7.
45) Rocha ED, Sarkis JE, Carvalho Mde F, et al. Occupational exposure to airborne lead in Brazilian police officers. Int J Hyg Environ Health 2014 Jul; 217(6): 702-4. doi: 10.1016/j.ijheh.2013.12.004. 46) Martyny JW, Serrano KA, Schaeffer JW, et al. Potential exposures associated with indoor marijuana growing operations. J Occup Environ Hyg 2013; 10(11): 622-39. doi: 10.1080/15459624.2013.831986. DOI: https://doi.org/10.1080/15459624.2013.831986
47) Witter RZ, Martyny JW, Mueller K, et al. Symptoms experienced by law enforcement personnel during methamphetamine lab investigations. J Occup Environ Hyg 2007 Dec; 4(12): 895-902. DOI: https://doi.org/10.1080/15459620701693516
48) Song MH, Chang BU, Kim Y, et al. Radon exposure assessment for underground workers: a case of Seoul Subway Police officers in Korea. Radiat Prot Dosimetry 2011 Nov; 147(3): 401-5. doi: 10.1093/rpd/ncq461. DOI: https://doi.org/10.1093/rpd/ncq461
49) Chirico F. Il comfort termico negli ambienti di lavoro. Milano: Edizioni FS; 2016.
50) Coordinamento tecnico per la sicurezza nei luoghi di lavoro delle Regioni e Province Autonome in collaborazione con l'ISPESL. (2006). Linee Guida su microclima, areazione ed illuminazione nei luoghi di lavoro. Requisiti standard. Indicazioni operative e progettuali.
51) Malchaire JB. The SOBANE risk management and the Dèparis method for the participatory screening of the risks, accessibile all'indirizzo http://www.deparisnet.be/ (ultimo accesso il 12-08-2015).
52) Malchaire J, Mairiaux P. Strategy of analysis and interpretation of thermal working conditions. Ann Occup Hyg 1991 Jun; 35(3): 261-72. 53) Chirico F, Rulli G. Strategy and methods for the risk assessment of thermal comfort in the workplace. G Ital Med Lav Ergon 2015 OctDec; 37(4): 220-33.
54) ANSI/ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy.
55) Satish U, Mendell MJ, Shekhar K, et al. Is CO2 an Indoor Pollutant?
Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environmental Health Perspectives 2012; 120(12): 1671-1677. DOI: https://doi.org/10.1289/ehp.1104789
56) Settimo G, Brini S, Baldassarri LT, et al. Presenza di CO2 e H2S in ambienti indoor-residenziali: analisi critica delle conoscenze di letteratura. Accessibile all'indirizzo web: www.iss.it/binary/iasa/cont/ CO2_H2S_FINALE.pdf. (ultimo accesso il 19 aprile 2016).
57) CDC. Carbon Monoxide Poisoning. Accessibile al sito web: www.cdc.gov/co/ (ultimo accesso il 19 aprile 2016).
58) UNI EN 15251: 2008. Criteri per la progettazione dell'ambiente interno e per la valutazione della prestazione energetica degli edifici, in relazione alla qualità dell'aria interna, all'ambiente termico, all'illuminazione e all'acustica.
59) UNI EN 13779: 2008. Ventilazione degli edifici non residenziali. Requisiti di prestazione per i sistemi di ventilazione e di climatizzazione. 60) Margani G. L'edificio passive nel clima mediterraneo. Costruire in laterizio. 2010; 141: 46-49.
61) Chirico F. What's new about the thermal comfort in the Italian law? A comparison of the Dpr n. 74/2013 and the technical standards Uni En Iso. Med Lav 2015 Nov 22; 106(6): 472-4.
62) de Dear R, Brager G. Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions 1998; 104(1): 145-67. 63) Freda D, Del Gaudio M, Lenzuni P. Indoor air quality in environments with anthropogenic pollution-descriptor and limit values. Ital J Occup Environ Hyg 2010; 1(1): 33-39.
64) Alfano G, D'Ambrosio FR, Riccio G. La valutazione delle condizioni termoigrometriche negli ambienti di lavoro: comfort e sicurezza. Napoli: Cuen editore; 1997.
65) Cavallo DM, Carrer P, Liotti F, et al. Qualità dell'aria degli ambienti confinati non industriali: indicazioni per la valutazione del rischio e la sorveglianza sanitaria. G Ital Med Lav Erg 2004; 26(4): 416-428. 66) D'Ambrosio FR, Alfano G, Liotti F. La qualità degli ambienti confinati non industriali: il discomfort termo igrometrico. G Ital Med Lav Erg 2004; 26(4): 401-415.
67) Lenzuni P, Freda D, Del Gaudio M. Classification of thermal environments for comfort assessment. Ann Occup Hyg 2009; 53(4): 325-32. 68) Chirico F, Taino G, Malagò G, et al. Studio preliminare sul comfort termico e l'Indoor Air Quality in un ufficio "sigillato" di tipo "open space". G Ital Med Lav Erg 2017 Sep; 39(3 Suppl): 139. DOI: https://doi.org/10.1093/annhyg/mep012
69) Chirico F, Ferrari G, Taino G, et al. Prevalence and risk factors for Sick Building Syndrome among Italian correctional officers: A pilot study. J Health Soc Sci 2017; 2(1): 31-46. doi: 10.19204/2017/prv13.

How to Cite



[Thermal comfort and indoor air quality in some workplaces of the Polizia di Stato (State Police) in Italy]: Comfort termico e qualità dell’aria indoor in alcuni ambienti di lavoro della Polizia di Stato in Italia. (2025). Giornale Italiano Di Medicina Del Lavoro Ed Ergonomia, 39(4), 230-239. https://doi.org/10.4081/gimle.638